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ABSTRACT

The MPMS mechanism possess two revolute degrees-of-freedom and allows the
user to measure the mass, center of gravity, and the inertia tensor of an unknown

mass. This paper develops the dynamics of the Mass Properties Measurement
System (MPMS) from the Lagrangian approach to illustrate the dependency of
the motion on the unknown parameters.

93



Kennedy Space Center

MPMS Dynamics

Aug 6, 1993 Keith L. Dory

NASA Faculty Fellow

4

1. INTRODUCTION

The Mass Properties Measurement System (MPMS), illustrated in Figure 1.1,

consists of a serial kinematic mechanism with two intersecting revolute axes, z 1

and z 2, that intersect with fixed angle tx 1. The joint angles and rates denoted by

01, 02 and 01, 02, respectively, turn about the respective joint axes.

Figure 1.1

I

I

I

Unknown Mass _ e 1

| •

_ Turntable

Mass Properties Measurement System (MPMS).

The function of the MPMS is to measure the mass, center-of-gravity and second- "

order mass moments of an unknown mass placed on the turntable. The mass. and

center-of-gravity can be determined from static measurements. The inertia tensor

must be determined from the dynamics.

The structure of the Mass Properties Measurement System (MPMS) lends itself to

a straightforward dynamics analysis using the Lagrangian approach. The

dynamics analysis assumes ct 1 as a parameter.

The symbolic software package Mathematica was used to produced and verify

the equations presented here. In the analysis to follow, the standard Denevit-

Hartenberg kinematic parameters of the MPMS were employed.
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2. MPMS KINEMATICS

Table 2.1 lists the Denevit-Hartenberg kinematic parameters for the MPMS

mechanism.

Table 2.1 • Kinematic Parameters for the MPMS Mechanism

Joint [d 0 [a I_

1 r 0 01 0 17-,1

2 r 0 02 0 0 °

From the DH-parameters of the MPMS mechanism listed in Table 2.1, the two

link transforms compute to

0R 1 0 ) ( 1R 2 0
L1 = L2 =

0 0 0 1 0 0 0 1

where 0R 1 = Sl "el Cl -_1 cl 1R2= s2 c2

0 (l 1 1;1 0 0

o)0

1

(2-1a)

(2-1b)

and c i := cos(0i) , si := sin(0i), 'l;i := c°s(°_i) and _i := sin(cti)" The forward

kinematics transform of the MPMS equals

°T2 = L1 L2 (2-2)

which computes to

0R 2 0 )
°T2=

0 0 0 1

(2-3)

where
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0R 2 =

Cl c2- I; 1 s 1 s2

Sl c2 + "_1 Cl s2

(Yl s2

-Cl s2 - 1;1 Sl c2 (Yl Sl

-s I s 2 +'Cl Cl c2 -(YlCl

£Yl c2 1:1

N

(2-4)

The forward analysis presented here serves as reference. The rotation part

indicates how to change frame F 2 vector representations into frame F 0

representations. The dynamics analysis presented later will make use of the

forward kinematics °T2 •

3. MPMS END FRAME JACOBIAN

The Jacobian of the MPMS relates the joint-rates _1 = [ 61

velocity V = [v x cox ]x of the end-frame,

()2] x to the frame-

V = J _1. (3-1)

The Jacobian of the MPMS computes [1] [2] to

f 0 0 "_

0 0

0 0
2,ol = (3-2)

°2,2 (Yl s2 0

(Yl c2 0

\ x 1 1

The leading superscript 2 means that this Jacobian is expressed in frame F2

while the 0 indicates the motion the end-frame, designated by the second

subscript, is relative to the base frame Fo of the MPMS. The first subscript

indicates the frame origin at which die linear velocity is measured.

For convenience, we write

f2,01 t
2,01 [ '_ v2,2

o2, 2 = /2,01
_. "(0,2

where 2'°1
.pv2,2 00 / 1s20t0 0 ) and 2'°1 (_1C2 0

-" _OJ,2 --

0 0 x I 1

(3-3)

6
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4. MPMS DYNAMICS

The Lagrangian approach to dynamics of the mechanism requires the calculation

of the kinetic and potential energy of the moving masses.

Potential Energy Terms

Assume the center-of-mass vectors for the first and second links equal r 1 and

r 2 . These vectors are constants in their own frames,

;r,l ;rx )
Xrl = [ryl] and 2r2 = |ry2 ] (4-1)

k.rz I ) k,rz2 J

The gravitational field vector in Figure 1.1 equals

/°/0g = gc CYl
(4-2)

and the potential energy of a mass m at position p equals

P = -m gX p

hence, the potential energies P 1 and P2 of the first and second link equal

(4-3)

* 0gX 1 *PI = -ml gX rl = _m 1 0R1 rl
(4-4a)

and

* 2 *
P2 = -m2 ga: r2 = _m 2 0g'_ 0R2 r2 .

(4-4b)

The torques associated with changes in the potential energy of the mechanism

OP 1 0P2 OP1 0P2 3P2

links equal Xpe 1 = 00i -+ 301 and Zpe 2 = 302 + 302 = 3-02" These torques

compute to
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l:pel = ml (Yl gc{rxl Cl + ryj I: 1 s 1 + rzj o 1 s 1 } + m 2 o 1 gc{rx2 (c 1 c 2 - 'gl Sl s2)

+ ry2 (-1;1 c2 Sl - Cl s2) + rz2 °l Sl } (4-4a)

Xpe2 = m2 _I gc{rx2(-c2 1;1 +Xl Cl c2 - Sl s2) + ry2 (I;1 s2 - c2 Sl - 1;1 Cl s2)} (4,4b)

Equations (4-4) will provide the means for measuring the mass and center-of-

gravity for each link.

Measuring MPMS Link Mass and Link Center-of-Gravity

By measuring the balancing torque on joint one and setting the joint angles at

different angles one can determine the required information about the first-order

mass moments of each link. This information will allow us to subtract the gravity

torque terms due to the mass of the MPMS when we desire to measure the mass

properties of the unknown mass.

Experiment 4.1 01 = 0, 0 2 = 0,

"_xl := ml O1 gc rxl + m2 O1 gc rx2 (4-5)

Experiment 4.2 01 = 0, 02 = re/2,

1:x2 := ml _1 gcrxl - m2 G1 gc ry2 (4-6)

From these two measurements one computes

'_xl - I:x2 '_xl + _x2
and m 2 rxl = (4-7)

m2 ry 2 = 2 (yl gc 20l gc

Experiment 4.3 01 = re/2, 02 = 0,

Xx3 := ml ql gc( ryl Zl + rzl (rl) + m2 °l go(" ry2 1;1 + rz2 G1) (4-8)

Experiment 4.4 01 = _/2, 0 2 = n/2,

"ix4 := ml (Yl gc(ry! '1:1 + rzJ (rl) + m2 (Yl gc(- 1:1 rx2 + rz2 Ol) (4-9)
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From Experiments 3 and 4 one can find

a;x3- a:x4 + m2ry 2 (4-10)
m2 rx2 = G1 1;1 gc

Relation (4-10) does not apply when 1;1 = 0, i.e., when o_1 = M2.

From (4-7) and (4-10) we can develop a linear relation in the other unknowns,

1 1;pel
1;,pe I := _ { - mlrxl c 1 - m 2 rx2 (cl c2 - "_1 Sl s2)(Yl gc

+ m2ry2 (-Xl c2sl- cl s2 ) }=ml {ryl,Cl+rzl _1} +m2rz2O 1 (4-11)

Since the unknowns in (4-11) have fixed coefficients, those unknowns cannot be

resolved further.

In summary, (4-7), (4-10) and (4-11) provide the necessary information for

determining the MPMS gravity tel-ms. The actual mass values and center-of-

gravity terms do not need to be determined completely.

MPMS Kinetic Energy Terms

The total kinetic energy K of the MPMS motion equals K = K 1 + K2, where K i ,

i = 1,2, equals the kinetic energy of link L i defined with respect to the origin

define in Figure 1.1. The joint torques "_kel and a;ke 2 required to generate the

motion, assuming a conservative system, equal, according to Lagrange,

d_d_3Kl 3K

d-
i = 1,2. (4-12)

The torque terms associated with each kinetic energy

a;keji= _-_0{}ij O---_i' j= 1,2; i = 1,2.

(4-13)

sum to produce the total torque for that joint,

"l;ke i = 'l;ke li + '_ke2i
(4-14)
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Since the origin does not translate, the kinetic energy for both links of the MPMS

equals the rotational kinetic energy,

1 (4-15)
Ki = _ co i <o> I i coi, i = 1,2,

where m i equals the angular velocity and I i equals the standard inertia matrix for

link L i . In frame F i the matrix I i has constant terms.

From (3-1) and (3-3),

/°/1'0_1 = {}1 (_1 ,

1;1

2,0(02=2,01 /0.1/ (4-16)
t02J

The kinetic energy of the first link

1
K1=7 1,0 o 1I 1,0 ol1 <'> 1

(4-17)

does not depend on either of the joint variables nor t}2, hence,

/°)" d___OKl 1 OK1 ),r (_1

"l:kell:= d__0--_-lj- _--Oi -{}1 (0 (_1 I;1 111 1:1

(4-18)

d__[OK11 3Kt

"¢kel2:= d___--_-2]- 202
-0 (4-19)

The kinetic energy of the second link equals

1 (01]<°> 2,01 "1; 212 2,0I (_1"_ (4-20)
K2 = 2 "o2 °°'2t0:j  02)

and does not depend upon 01. Hence, the torque conuibution by joint one to the

motion of the second link equals

10
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d_K2] _K2

"gke21 := dt[_l]- _01

=0,+=0,(_)"032 212 °°a'2
<.>71/+

[o2)

=0i+_,0,(1)"o)2 212 °01'2
<°>

02 ) ""m2 212 000,2

+>?.q ,4_21,
I,o2)

Similarly, the torque contribution by joint two to the motion of link two equals

d__.21 3K2,_ke22:= -- 30 2
I_ 2.1

_ 2,01"c 2,01 (0)"-"032 212 om,2

"032 212 °°)'2
<°>

(} +. "0.)2 212 °m'2
<°>

2,oj x
• m2

212 2,0I + 2,01 "cJoa,2 " o.)2 212
,o. (_1/Jto,2

ao2 }[02)
(4-22)

From (3-3) compute

c O)
2,oi =ox62 -s2 0

°01'2 0 0

_2,0I
o01_2

and u,,:an2 = (_1 c O)
-s 2 0

0 0

(4-23)

and deduce

_.oi,=.o,(o)=.o,+_,o,(o)(o)"032 2][2 o01,2 = "032 212 o_,2 = '

2,01 "_ 212 2,01 ="o)2 ,-'01,2 Izz 2

(4-24)

(4-25)
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Relations (4-24) and (4-25) allows us to simplify (4-22), and, coupled with (4-19)

yields the joint-two, kinetic energy derived torque 'l;ke 2,

(0) (01_
"l;ke2= "l;ke22"l"_kel2 = 2'0't'022][22'0"°°_.2 <'>/02 J+

,.o,..o. ..o.f_.)f_] -o, .o,.°.o,,
_ 1 <'> I 002 212 °o_,2 + "¢.o2 212 c)02 } _02)_02)

The joint-one, kinetic energy derived torque 'l;ke 1 equals the sum of (4-18) and

(4-21),

Xkel:;kell+Xkell-Ol lTl+ 2'01"c-"0322122.0,.,o.2_) <'> f_"')VOI)

+,.oi'.o..o,..o_(1)[_'I
.02212 o.,2 + -02212 °¢0,2 } <'> iv02 )

(4-26)

(4-27)

where

O
IT1 := (0 G 1 "el) x 111 GI

"¢1

cannot be resolved further by any joint measurements

Using Mathematica to expand (4-27) and (4-26) yields

(4-28)

12
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Xkel= 011TI + IzzXl ('62 + "01XI) + O1{ lyy c20 I ('01C2 - 2 01 02 S2)

+ ol s2(2 61 o2 c2+ "61s2)

+ Iyz (-'02 c2- 2 O1 C2 I;1 + 022 S2 + 2 61 6 2 x I S2)

+Ixz(-{}22c 2- 2b 162c 2x I-'62s2-2"6 lx ls 2)

- Ixy (l 1 (2 61 b 2 C202 + "61 S202) }
(4-29)

and

'l:ke2 = Izz ('62 + "61 "el) + (Ii{ Ixy 012 c202 01 + Ixz (012 c 2 "I;1 - "61 s2)

1 1 "

+ Iy z (-'61 c 2 - 012 1:1 S2)- 2 Ix._ 012 (_1 S202 + 2 Iyy 012 (I1 S202 } (4-30)

Equations (4-29) and (4-30) yield the essential relations for determining the

unknown inertia matrix 12 and the term IT I from torque, velocity and

acceleration measurements.

5. DYNAMICS OF THE UNKNOWN MASS

The functional objective of the MPMS is to measure the unknown mass properties

of an object placed on the table of link two (Figure 1.1). The unknown mass is

rigidly attached to link two during the measurements. Conceptually, this makes
the unknown object a part of the second link, hence, the combined inertia tensor

I

12 equals

i' 2 = i2 + Iu (5-1)

where 2I u is the inertia matrix of the unkamwn mass described about the common

origin of frame F 0 and F I . The dynamics analysis ill Section 4 applies to this

problem with 12 replaced by I;. Thus, the torques derived from the kinetic
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energy of the unknown mass alone have the form of "eke1 -

Xkea in (4-30) with the inertia terms replaced by those of the unknown mass,

"l;keul := Izzu "1;1 ('02 + "01 "1;1) + ffl{ Iyyu C2 (Yl ('01 C2- 2 01 02 S2)

+ Ixxu (Yl S2 (2 b 1 b 2 C2 + "01 S2)

+ Iyzu (-'02 C2- 2 "01 C2 "_1 + 022 S2 + 2 b 1 b 2 I; 1 S2)

+Ixz u(-022c 2- 2()1 ()2 C2 7;1- "02 S2- 2"01 7;1 S2)

- Ixyu (Yl (2 61 6 z C202 + O1 $202) }

and

_ke2

01 IT1 in (4-29) and

(5-2)

= Izzu (Oz + "61 xl) + (Yl {Ixyu 612 c202 ffl + Ixzu (612 c2 "cl- "O1 s2)

• 1 " 1 "
+Iyzu(-'Ol C2- O12171S2)-2Ixxu O12(yl S202 +2IyyuO1E(yl S202 } (5-3)

Equations (5-2) and (5-3) yield the essential relations for determining the

unknown inertia matrix I u from torque, velocity and acceleration measurements.

6. MEASURING THE UNKNOWN MASS

Since the torque equations are essentially the same for the inertia terms of link

two of the MPMS and the unknown mass, only the experimental technique for file

latter will be developed here.

The first question to resolve:

Will measurements of the torque, angular position, velocity and acceleration of

joint one provide sufficient data to compute all the inertia parameters of the
unknown mass?

14
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The answer will to this question is No. To verify this claim, note that, potentially,

all six independent parameters in I u might be determined from (5-2) given that

Experiment 6.1: 02 = 0,'02 = 0,

"Ckeul := "01 {Izzu I;12 +(512{ Iyyu C22+Ixx u $22-Ixy u $202 }

- 2 (51 z l{ Iyzu c2 + Ixzu s2 } }

which, in inner product form, equals,

where k is the coefficient

parameters in I u "

k "=

"l:keul = "61 k <'> I v

vector" and I v a six-vector of the

(6-1)

independent

2
g 1:1

(512 c22

(512 S22
2

-(51 S202

- 2 (l 1 1; 1 c 2

- 2 (51 "ClS2k

and iv := (6-2)

Iyyu

Ixxu

Ixyu

Iyzu

_.Ixzu j

If a vector can be found orthogonal to the coefficient vector for all choices of

MPMS configurations, then, six independent coefficient vectors k cannot be

obtained and, therefore, six independent equations in the six unknowns in I v

2 -Xl 2 0 0 0] x * 0 is such acannot be obtained. The vector x := [(51 -'I;12

vector: k <'> x = 0 for all possible k. This implies no non-singular

measurement matrix M can be formed from the set of possible k that will yield

six independent equations. Since M x = 0 for any M whose rows are constructed

from different k's, the mauix M possesses a non-zero vector in its null space and,

therefore, must be singular. Note that this observation holds for any choice of

angle ct I between the two joint axes of file mechmfism.

Observe that x cannot be solution to any inertia problem because it forces at least

one of the diagonal terms of I u negative, an impossible situation physically.

15
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Substitute x = I v, this is not a physically possible I v, into the general expression

for xkeui and find that Xkeul = Izz u _1 Xl "62 which proves that, minimally, one

must measure "0z on the second joint.

16

Experiment 6.2 0 1 -- 0, "01 = 0,

"Ckeul := Izzu 1;1 "02 + (_11yzu (-02 C2 + 622 S2 ) + G11xzu (-622 c2

o,

- 0 2 S2) (6-3)

hence,

Xkeul =k <°> I s (6-4)

where k is the coefficient vector and I s a three-vector"

k := (J1 (-'02 C2 + 622 S 2 )

k.(_l (-622 C2 - "02 S2)

and I s := Iyzu

xzu

(6-5)

By measuring the torque on joint one and the angular position, velocity and

acceleration on joint two, one can measure three independent equations (6-4) to

compute Izz u , Iyzu Ixz u. For example, if 02= rct 2 rc t "_ _ t, 4 , 62=-T-, 2 = 2 ,

0 <- t < a/2, and _z 1 = tan-l[_2 ], the measurement values of (6-3) for t=O,

t = 1, t = _/'2 lead to the measurement matrix

(kX(t=o) _ 0.9069 0

M = / kX(t=l) / =

_ kX(t=_)J

-1.28255 /
0.9069 -2.33145 0.517655

0.9069 -1.28255 4.02925
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whose determinant equals det[M] = -9.13734, proving that M non-singular and

that MI s = x2 can be solved for I s. With I s known, the remaining inertia

3

parameters can be determined from the measurements in Experiment 6.1.

Conclusion: If one measures torques and angular acceleration on

joint one, then the angular position, velocity and acceleration on joint
two must be measured (or calculated) in order to obtain all the

inertia parameters of the unknown mass.

7. PROPOSED DESIGN FOR MPMS

Based upon the analysis in this paper, we note that

1. All the mass properties of the MPMS and the unknown mass itself cannot

be determined by measurements performed only on joint axis one

quantifies.

Discussions with Kedron Wolcott on the construction of the current prototype

indicates

2. Construction of the bearings for the MPMS for a twist 0 < cx 1 < 90°

present significant cost and design penalties.

A talk with Richard Bennett indicates that

3. The current design occupies a large volume due to the twist o_1 -- 540

between the two axes.

4. The current design is not easily scalable to handle larger loads.

Based upon the four considerations above, the author proposes that the two joint

axes of the MPMS be oriented at right angles, o_1 = 90 °, as shown in Figure 7.1.

This design eliminates the problems mentioned in items 2,3, and 4, but will

require a torque sensor on the second joint. The following analysis demonstrates

the latter observation.
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¢

'0 2I

Unknown Mass

Zl :

¥ Nlh_ zo .
E _ .... .._.o__

_1_

Figure 7.1 Proposed MPMS.

Evaluate (5-2) and (5-3) for ot I = 90 °,

xko.1:= I,r. cz('01cz- 2 01i_2s2)+Lx.s2(2i_102c2+ "01s2)

+ Iyzu (-'02 c2 + 022 s2) - Ixzu ({}22 c2 + "02 s2)- I_yu (2 _11 {)2 %02 + "01 s202 )(7-1)

and

'l:ke2 = Izzu "02 + Ixyu 612 C202 -- Ixzu "61 S2--Iyzu "01 C2

1 1 {)12 S202-- _ Ixxu _}12 8202 + _ Iyyu

Observe that Izz u cannot be determined from (7-1). However,

and fixes _}1 = 0, "01 = 0, then (7-2) yields

(7-2)

if one measures 2:ke 2

18
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Izzu = "l_ke2 when Ol = O, "61 = O. (7-3)

To measure the other inertia parameters set i92 = 0, "62 = 0 in (7-1) and (7-2) to

obtain

,l;keul := ( iyy u C22 + ixxu s22 _ Ixy u S202 ) "61 (7-4)

1 1 6 2 = (IxzuS2+ Iyv_C2) "(i 1 (7-5)
(Ixy u C202 -- _ Ixx u S202 + 2 Iyyu S202) 1 -- "gke2

The procedure would be to use (7-4) to obtain Iyy u, Ixx u ,[xyu and then substitute

these values in (7-5) to obtain the remaining inertia terms Ixz u ,Iyzu •

Experiments 7.1 and 7.2 entail measuring both torques, i9x and "01 with the second

joint axis fixed, respectively, at 0 2 = 0, /_/2 and n/4. For the last angle,

measurement of the torque on the second joint is not required.

Experiment 7.1

oQ

6 2 = 0, 0 2 = 0

Xkel (7-6a)
1.0 2 = 0 , Iyy u = ---

"61

Xkek (7-6b)
2. 02 = n/2 , Ixx u =

3. 0 2 = rt/4

I_ yu C22 + Ixxu S22 -- 'gkel

Ixy u = ....y...................................

"6,
(7-6c)
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Experiment 7.2 b2- 0, "02- 0

1.02 = 0 , Iyzu =

Ixyu O12 -- _ke2
(7-6d)

2. 0 2=1t/2 ,Ixz . =
-Ixyu 012 - q;ke2

(7-6e)

Equations (7-3) and (7-6) determines the inertia tensor of the unknown mass .
Further, the same measurements performed on the MPMS when it is unloaded

will allow one to compute the inertia tensor for the turntable and link.

8. CONCLUSION

Theoretical analysis proves the inertia parameters of an unknown mass can be

determined from the joint torques, positions, angular velocities and angular

accelerations of the Mass Properties Measurement System (MPMS). In particular,

the existing system requires measurement of the torque and angular acceleration

on joint one and the angular position, velocity and acceleration on joint two. A

proposed system, where the twist angle between the MPMS turning axes equals

90 °, permits computing the inertia terms in a simple manner with the additional

requirement of measuring the second joint torque for one set of measurements.

The new design offers some significant advantages. It packages more compactly,

allows simple mechanical scaling, and is easier and less costly to construct.

The next report will discuss actual physical measurements with the existing

system to determine the precision with which the MPMS can measure the mass

properties of an unknown mass.
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